
A Brief History of Dislocation Theory 

J.P. HIRTH 

Early developments leading to the concept of a dislocation are discussed. The discoveries of 1934 are 
described. The subsequent evolution of various aspects of dislocation theory is outlined. 

I. HARBINGERS AND ANTECEDENTS 

W E  are all now familiar with some of the pedagogical 
dislocation analogs, such as the crawling caterpillar and the 
puckered carpet, Figure I. As documented in two valuable 
sources 1'2 for historical information, scientists in the 19th 
century had thought of a grain-type model of the aether 
containing localized defects, analogous to dislocations, that 
would enable the aether to deform.3'4 Burton 3 called these 
defects strain-figures, and Larmor s described the creation of 
a strain-figure, that we would now recognize as a disc of 
twist boundary terminating within a material: he envisioned 
the creation of a lens-shaped cavity and the twisting of one 
surface in its plane, followed by the cementing together of 
the two sides. Somewhat related, a mosaic-block model of 
subgrains within a crystal was developed by Darwin 6 to 
explain the intensity of X-ray diffraction; the walls of these 
grains now being recognized as small-angle dislocation 
boundaries. 

The elastic fields of dislocations in isotropic con- 
tinua were derived beginning at the turn of the century. 
Weingarten 7 considered defects formed by the displacement 
of cut surfaces in bodies and showed that rigid displace- 
ments of the surfaces, creating dislocations, were required 
if strains in the body were to remain bounded. The stress 
fields of these defects were determined by Timpe 8 and the 
elastic properties were elaborated by Volterra, 9 who classi- 
fied the general types of the defects into the six forms shown 
in Figure 2. Volterra called the defects distorsioni, but later 
Love, 1~ who also contributed to the elastic theory, "ventured 
to call them dislocations." In the continuum mechanics litera- 
ture there is still a tendency to follow this nomenclature 
and call all of these defects dislocations, but in the crystal 
plasticity area the defects in Figures 2(e), (f), and (g) 
are almost exclusively called disclinations while those in 
Figures (b), (c), and (d) are called dislocations. 

The line of thought leading to the events of 1934 might be 
considered to have originated in the observations 11'12 in the 
19th century that metals plastically sheared by forming slip 
bands or slip packets and in the work in X-rays in the early 
20th century by M. VonLaue, P.P. Ewald, W.H. Bragg, 
and W.L. Bragg culminating in the concept of crystal- 
linity. 13 A series of localized or extended defects was 
envisioned ~4-19 in an effort to explain slip or fracture of 
crystals, some in view of the large discrepancy between 
theoretically predicted strengths for perfect c r y s t a l s  20'21 and 
experimental results. One of t h e s e  16 had some elements of 
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the Frenkel-Kontorova model described subsequently. Also 
of relevance to this model, Dehlinger 22 considered atoms 
above a slip plane to repose on a sinusoidal potential associ- 
ated with atoms below, and conceptualized a localized de- 
fect, the Verhakung, that could cause the shear motion of 
atoms. In modem terms, the Verhakung is a pair of opposite 
sign edge dislocations separated by about an atomic dis- 
tance. 23 In a model for the glide of single-crystals of zinc, 
Masing and Polanyi 24 proposed the configuration in Fig- 
ure 3. Polanyi called the defects verniers 25 and the represen- 
tation reflects this. The defects in the present context would 
be edge dislocations uniformly extended over about ten 
atomic distances, a configuration that is now known to be 
unrealistic; in essence Figure 3 represents a stack of elas- 
tically bent beams. 26 Yamaguchi 19 came very close to the 
concept of an edge dislocation; indeed his Figure 10 shows 
a double edge dislocation terminating a slip band that started 
at a surface, together with associated lattice strain. How- 
ever, his view of the resistance to motion of the defect was 
tied to lattice curvature. 

Thus, a number of models with some resemblance to 
dislocations had been postulated, but all missed some aspect 
of the true configuration, and the work in elasticity had not 
been related to crystal defects. One more early paper is 
relevant historically, although at first glance it might seem 
to be peripheral to the topic of dislocations. In their recollec- 
tions, 26'27 both Orowan and Taylor particularly emphasize 
the importance of the theory of Griffith za for cracking of a 

(a) 

(b) 

Fig. 1--Dislocation analogs used for pedagogical purposes: the cater- 
pillar and the carpet. 
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Fig. 2 - - T h e  types of dislocations as classified by Volterra. 9 

brittle crystal. The theory led Orowan to think of slip origi- 
nating at a crack tip as a consequence of stress concentration 
and led Taylor to envision the formation of a set of mode II 
shear microcracks in a slip band. 

II. THE EVENTS OF 1934 

This semicentennial seminar recognizes the three re- 
nowned 1934 papers 29'3~ denoting the initiation of the 
dislocation theory of slip. As noted by Orowan, 26 Taylor 
submitted his paper first, while the other papers appeared 
first. A number of ideas concerning dislocations, including 
the mechanics of multiplication by "reflection" at a free sur- 
face, had been presented in Orowan's thesis of 1929. 26 The 
chain of events leading to his 1934 paper, as recounted by 
him, included the adventitious dropping of a zinc single 
crystal which led to observations of jerky flow and in turn 
to the consideration of models to explain the low resistance 
of a metal to shear. Orowan 29 sketched both the cross section 
of edge portions of a dislocation loop, showing the bent 
lattice planes resulting from the near-core strain field, and a 
schematic view of a dislocation loop on a glide plane, im- 
plicitly including edge and screw portions. Glide was ac- 
complished by the growth of the loop in its glide plane. 
Polanyi had suggested that Orowan publish on his own, 26 
but after discussion agreed to submit a paper to appear 
together with that of Orowan. Polanyi's sketch 3~ of an edge 
dislocation in cross section reflects his earlier ideas on ver- 
niers, showing a uniformly extended dislocation. The model 
showed that dislocations could glide under stresses less than 
the theoretical shear stress, but did not reveal the local strain 
field near the dislocation. Polanyi had dropped his original 
term of vernier and called the defects Versetzung, a name 
also adopted by Orowan 25 and currently in use. 

Fig. 3- - Imperfec t ions  in a bent single crystal. 24 

In contrast to thinking of models for low shear strength, 
Taylor had been thinking of shear microcracks and of how 
these could lead to the strain-hardening of a material. 27 He 
realized that the ends of such a microcrack were dislocations 
that could move independently to produce glide. His draw- 
ings of an edge dislocation in cross section illustrated 
the glide process and showed the lattice distortion of the 
near-core strain field, 31 which he connected to the earlier 
elasticity calculations. 8'9'1~ On the basis of the stress inter- 
actions, he also developed a two-dimensional model for 
work-hardening. 31 While he states that he regarded this 
model only as suggestive, it has many features of current 
models of hardening in uniaxial deformation, 32 as well as 
corresponding to a present-day conception of the dislocation 
wall structures in fatigued crystals. 

Taylor continued to contribute broadly in the area of plas- 
ticity, 34 while Polanyi's interests turned to the field of social 
science. Orowan also contributed broadly, but more specifi- 
cally performed other important work in dislocation theory. 
These contributions included his work on dislocation mul- 
tiplication by the double-cross-slip mechanism; 35 on the 
Orowan mechanism of a dislocation bowing-out and by- 
passing hard particles in its glide path; 36 and on polygoni- 
z a t i o n .  26 In addition he had developed the physical model 
that led to the calculation by Peierls of the Peierls s t r e s s .  37 

Indeed, in an interesting recollection of his derivation of this 
stress, Peierls suggests that it might have been more appro- 
priate to call it the Orowan stress. 38 

The 1934 papers clearly delineated the properties of edge 
dislocations. The equivalent properties for screw and mixed 
dislocations were described by Burgers 39 in the course of his 
work on the vector field theory for the elastic fields of 
dislocations, developed in analogy to vortices in hydro- 
dynamics. 

III. DISCLINATIONS AND DISPIRATIONS 

As already mentioned, the elastic defects in Figures 2(e), 
(f), and (g) are now generally called disclinations. While 
isolated disclinations are unusual in metal crystals well be- 
low their melting points, they appear in a number of phys- 
ical systems including the Abrikosov flux line lattice of 
superconductors, the Bloch wall lattice of ferromagnetic 
domains, and organic crystals, including liquid crystals. 4~ 
They even appear, by geometric necessity, in geodesic 
domes. 41 For organic crystals, the recognition of disclina- 
tions preceded that of dislocations, with observations of 
disclinations in molecular crystals by Lehmann 42 at the turn 
of the century, and their physical description by Friedel. 43 
The etymology of disclination is lengthy, the defects being 
called Symmetriepunkte, 42 noyaux or fils, 43 dislocations, 9'1~ 
and other special names in noncrystalline analogs 4~ (delta 
figures in fingerprints, for example). Frank used the term 
Mi~bius crystals 44 and later disinclinations. 45 However, ac- 
cording to Nabarro, 46 Frank later changed the name to dis- 
clinations after consulting with a philological colleague 
who said he was "disinclined" to use the former name. 
Nabarro first used the word disclination in print, 47 calling 
the defects in Figures 2(e) and (f) screw disclinations and 
that in Figure 2(g) an edge disclination. The terms wedge 
disclination 4s for Figure 2(g) and twist disclination 49 for 
Figures 2(e) and (f) were later suggested and are now used 
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almost universally. Of historical interest, a twist disclination 
was described by Larmor. 5 

A line defect can have both dislocation and disclination 
character in an elastic continuum sense. The dislocation and 
disclination have discontinuities, respectively, in trans- 
lational and rotational displacements. The combined defect 
has a screw symmetry displacement continuity, is unique in 
its crystallographic aspects, and is called a dispiration. 40,50 

The elastic properties of disclinations and dispirations 
have been extensively developed by deWit 5~ and Chou. 5~ 
Many aspects of the elastic and other properties of dis- 
locations are treated in other papers presented at this sym- 
posium. Here, we briefly trace the historical development of 
various subfields of dislocation theory. 

IV. GROWTH OF THE 
FIELD OF DISLOCATIONS 

A. Continuum Theory 

Brown, 52 while considering magnetic properties of dis- 
locations, originated the concept of smearing discrete 
dislocations into a continuous array of infinitesimal dis- 
locations. This method has resulted in connections with 
powerful methods of mathematics but describes properties 
of the net dislocation density and has some problems in 
uniqueness and the description of arrays of dislocations of 
opposite sign. In early work, Nye 53 described the connec- 
tion between the net dislocation density tensor and the lat- 
tice curvature. Kondo 54 and Bilby, Bullough, and Smith 55 
showed that the Cartan torsion of space is the continuum 
equivalent of the dislocation, with the Cartan circuit closely 
related to the Burgers circuit. 56 The latter authors used the 
continuum description to derive the geometric properties 
of grain boundaries. Kr/Sner s7 developed the concept of 
the incompatibility, proportional to derivatives of the 
dislocation density, and descriptions of the elastic fields 
in terms of it. Further advances are discussed in several 
reviews. 57.58,59 

Another aspect of continuum models is the development 
of nonlocal or couple-stress theory, a method within con- 
tinuum theory of treating nonlinear strains, in terms both of 
geometric plasticity effects and of the large elastic strain 
regions near dislocation cores. The theory originated with 
the concept of the Cosserat continuum. 58 The connection 
with the continuum theory of dislocations was clearly made 
in 196859 and is the subject of a recent book. 6~ Nonlocal 
theory has been applied to discrete dislocation core regions 
as well. 61'62 Most recently, a gauge theory for dislocations 
has been presented, 63 but its connection to physical dis- 
locations is obscure at present. Many of the concepts of 
continuum theory are lucidly discussed by Nabarro. 2 

B. Elastic Theory 

The early calculations for elastic fields of dislocations 9'31 
were corrected by Brown 52 and Koehler. 64 As mentioned 
previously, Burgers developed a vector field theory for dis- 
locations leading to his renowned vector equation for the 
displacement field of a dislocation loop in terms of line 
integrals over its length and an area integral over its area of 
cut in its formation. 39 As reviewed elsewhere, 65 this equa- 
tion led to the Peach-Koehler equation for the virtual ther- 

modynamic force on a dislocation segment arising from 
external and internal stresses 66 and later to the Blin equation 
for the total elastic energy of a dislocation loop. 67 A com- 
plete treatment of early elastic theory of straight dislocations 
and simple shapes is given by Nabar ro .  68 The concept of 
image forces on a dislocation associated with its interaction 
with free surfaces was enunciated by Eshelby 69 and Lothe. 7~ 
Kroupa derived the elastic field of an infinitesimal dis- 
location loop, which could be integrated to give the elastic 
field of planar loops. 71 

Analytical solutions for the fields of complex curved dis- 
location configurations can be obtained if the dislocation 
lines are replaced by approximate shapes consisting of ar- 
rays of straight line segments. The fields of an angular pair 
was given by Yoffe; 72 that for single straight segments by 
JCssang et al. 73 (corrected in both cases in Reference 65). 
Another single segment model was given by Eshelby and 
Laub, TM in which the segment ends were connected by a 
continuous fan of infinitesimal dislocations. The Brown 
fo rmula  75'76'77 gives the stress field of a single segment at a 
point in terms of the elastic energies of an infinite straight 
dislocation pair with lines passing through the point in ques- 
tion and the ends of the segment. This formula, which 
applies for isotropic or anisotropic elasticity, had its origins 
in Mura's equation, developed from the Burgers relation for 
displacements, for the displacement gradients in terms of 
line integrals. 7s 

The anisotropic elastic theory for straight dislocations 
arose with the work of Eshelby et al. 79 S t roh80  developed 
an alternate, explicit solution in terms of special vector 
functions, and Willis 81 presented an explicit solution em- 
ploying Fourier analysis. The Stroh theory was elaborated 
as an integral theory, facilitating numerical calculations, by 
Barnett and Lothe. 82 Recent developments are discussed 
in several reviews. 65'83 

C. Lattice Theory 

The original derivation of the Peierls stress 37 was cor- 
rected by Nabarro. s4 With the advent of fast computers, 
atomic calculations, replacing the glide-plane-strip-non- 
linear region of the original work with a cylindrical core 
region centered on the dislocation, have been used to esti- 
mate the Peierls stress and energy. Early work is reviewed 
by Puls. 85 An important result was the finding that a dis- 
location is a center of dilatation producing a volume increase 
in a crystal of about an atomic volume per atomic plane 
cut by the dislocation; of this about 60 pct resides in the 
long-range strain field 86'87 and 40 pct in the highly nonlinear 
core region)  8 Closely related to the Peierls model are 
the Frenkel-Kontorova s9 one-dimensional model of spring 
connected balls on a periodic substrate with one less (more) 
ball than potential minima (see Reference 22) and the inter- 
face dislocations in oriented overgrowths. 9~ 

The presence of the Peierls barrier causes dislocations to 
tend to lie in low index directions at low temperatures. 
Where the dislocation locally leaves this direction a kink (in 
the glide plane) or jog is formed. These core defects can 
occur by geometric necessity, at thermal equilibrium, or by 
dislocation intersection. 9~ They can serve as charged defects 
in ionic crystals, 92 important as extrinsic sources of charged 
point defects and of electronic defects. 
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Kink concepts were used to describe low-temperature 
deformation (creep and internal friction) by double-kink 
nucleation 93 and growth. 94'95 Interestingly, these models 
have been found to give kinetic equations that also apply 
to the recently developed theory for soliton motion in 
one dimensional conductors and to crystal growth by ledge 
motion. 65,96 

Jogs are important as sites where dislocation climb oc- 
curs, 97'98 the jogs acting as sites for local equilibration of 
vacancies (interstitials). 99 

D. Groups of Dislocations 

The early theory for dislocation models of high angle 
boundaries was presented by Read and Shockley.100 Their 
prediction for the energy of grain boundaries as a function 
of orientation is still applied. 101 The geometry of small-angle 
dislocation networks was advanced by Frank ~~ who also 
related the boundary misorientation to the dislocation con- 
tent of high angle boundaries. Elastic properties of cut and 
displaced surfaces corresponding to what could now be re- 
garded as either arrays of glide dislocations on a slip plane 
or a core distribution of infinitesimal dislocations had been 
treated in early work by Somigliana. 103 The vector theory for 
possible dislocation sets in grain boundaries was evolved 
by Amelinckx and co-workers. 1~ The concept of grain 
boundary dislocations (with Burgers lengths unequal to 
those of lattice dislocations and related to the grain bound- 
ary geometry) and their geometrical description was 
presented by Bollmann 1~ and represents a topic of great 
current interest. 101 

The Frank-Read source was conceived independently by 
Frank and Read on the same day and when they realized this 
they decided to publish the idea jointly. ~06 Other sources, 
most variants of the Frank-Read source and including spiral 
variants, were developed later, an important one widely 
observed experimentally 1~ being the double-cross-slip 
mechanism. 35:~ The reflection mechanism had been postu- 
lated earlier, 26:~ but Leibfried's work n~ on the damping 
coefficient for phonon damped dislocation motion showed 
that it was not possible, a finding leading to the renewed 
thought on the subject by Frank. The equivalent of the 
Frank-Read source in climb, the Bardeen-Herring source 
was suggested later, "1 as was its spiral variant. 

Work on dislocation pileups stems from the research of 
Eshelby et dl. 112 A number of subsequent models are dis- 
cussed by Chou and Li. 1~3 In the continuous infinitesimal 
dislocation approximation the results correspond exactly 
with those for a mode II continuum crack. Near-tip fields 
for nonplanar arrays can be taken directly from the equiva- 
lent continuum stress intensity factors in this approximation. 
Other arrays, including dipoles, multipoles, arrays of pile- 
ups, and intersecting segments can be treated by similar 
methods. 2,65,113 

E. Partial Dislocations 

In close-packed crystals in particular, stacking faults have 
relatively small interfacial energies and dislocations can dis- 
sociate into partial dislocations. Nabarro n4 traces the stack- 
ing fault concept in hard ball stackings through R. Hooke, 
C. Huygens, W.H. Wollaston, and J. Kepler to a paper by 
Barlow. 115 The concept of partial dislocations was presented 
by Frenkel and Kontorova, 116 and later 91 for the fcc Shockley 

partial �89 and the fcc Frank partial 117 with Burgers vec- 
tor �89 Thompson 118 introduced the convenient vector 
notation for fcc of the Thompson tetrahedron as well as the 
stair-rod partial, the smallest Burgers length form of which 
is ~(110). These concepts were elaborated to give more 
complex configurations including the Lomer-Cottrell lock, 
other locks, stacking fault tetrahedra, dislocation bends, 
dissociated dipoles, and dissociated jogs. Partial dislocation 
models for twinning were developed, an early one being the 
bcc pole mechanism of Cottrell and Bilby.119 

With the advent of computer simulation, the core struc- 
ture revealed other analogous defects. Dissociations over 
-atomic distances, too small to correspond to well devel- 
oped partial-stacking fault arrays, were observed. 120,m The 
three-fold dissociation of bcc screw dislocations success- 
fully explains the large Peierls stress for this case. The 
dissociated defects have some dislocation character and are 
called fractional dislocations. 122 The dissociation of the 
screw destroys the {110} mirror plane symmetry,123 leading 
to additional core defects, where the symmetry switches, 
called flips. 65 

E Observations of Dislocations 

Discussions at conferences through the early 1950's con- 
tain numerous comments doubting the existence of dislo- 
cations. The final evidence removing all doubts by skeptics 
began with the discovery of the technique of direct obser- 
vations of cell walls 124 and, subsequently, single disloca- 
tions 125:26 in transmission electron microscopy. This led to 
a still burgeoning field that identified many of the dis- 
location configurations discussed previously. Reviews of 
dislocation observations are given in two extensive articles 
by Amelinckx. 127a28 Other examples, some of which pre- 
ceded the electron microscopy work, include: dislocation 
etch pits, 107 dislocations in bubble rafts, 129 screw dislocation 
growth spirals, 13~ infra-red transmission, TM and field-ion 
emission micrographs. 132 

Departing from crystal defects, we see dislocations all 
about us. z'4~ Examples in nature include dislocations in 
block wall lattices, superconducting flux line lattices, cellu- 
lar eutectics, foam structures, brick walks, corn-cobs, the 
stripes on a zebra, the eye of a fly, the seeds in a sunflower, 
virus colonies, spider webs, and so forth. 

V. CONCLUDING REMARKS 

The foregoing compilation is not intended to be exhaus- 
tive, but to highlight particular advances in the under- 
standing of dislocations, emphasizing early work. Other 
excellent work has been performed, some of which is 
discussed by others at this symposium. More extensive 
references are given for the subject of dislocations in the 
series of books listed in the Bibliography appended to the 
Reference list. 
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